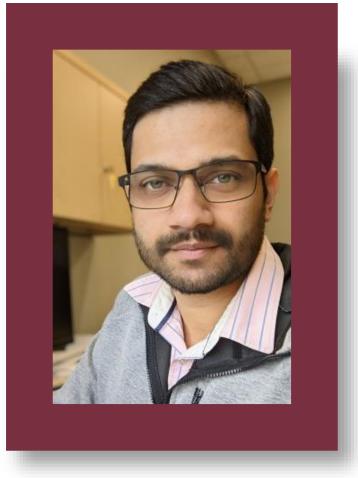

Plume Surface Interaction Scale Up Study Team 518

-

Leon, Santiago Meyaart, Nicolas Porcelli, Marco Sutherland Stephen

Sponsors

Jacobs Space Exploration Group


Marvin Barnes

Dr. Manish Mehta Dr. Robert Adams

Santiago Leon

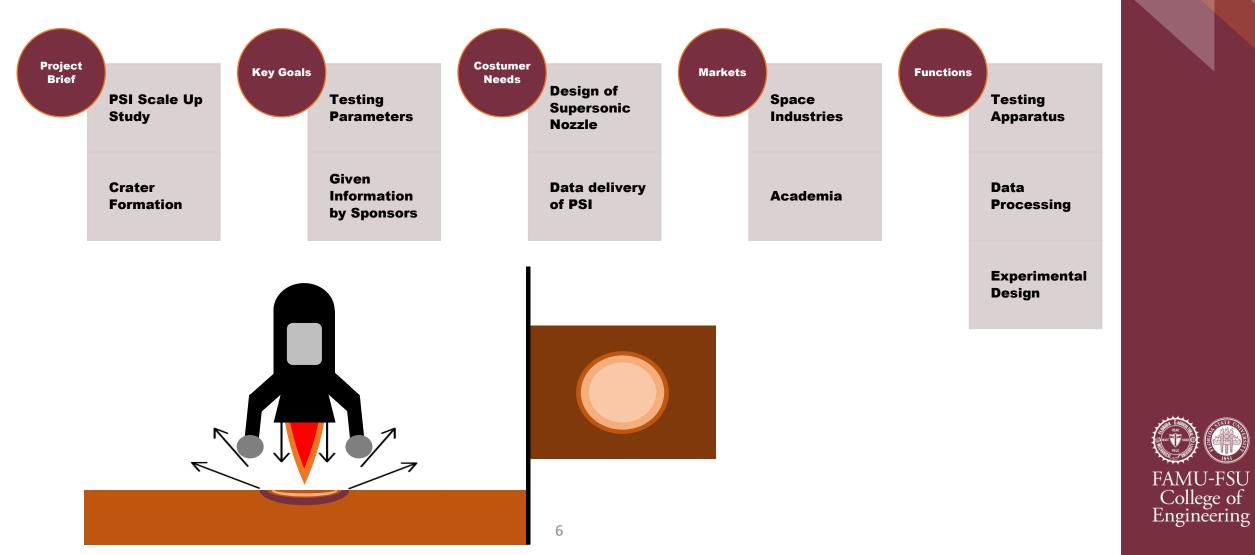
Advisor

Dr. Unnikrishnan Nair

Santiago Leon

Team Members

Meyaart



Objective

The objective of this project is to design and implement a testing apparatus to study the effects of scaling on crater formation due to Plume Surface Interaction.

VDR 1

Santiago Leon

Potential Experiment Locations

Outdoors

- Extended Space for Experiment
- Little to no Need for Accomodation
- Experiment Sensitive to Outdoor Conditions

Senior Design Lab

- Good Availability in Accomodation
- May provide limited space for experiment

Room at AME/CoE

- Nearby Faculty
- Need Accomodation

Santiago Leon

Targets and Metrics

Exit Jet Speed

• Must reach Mach 2

Enclosure Effect

• Minimize back pressure to 0 psi

Measure Crater width and depth

• Within 0.5% of total measurement

Correlate Data

• Create scaling laws that are accurate to 5%

Concept Generation

100 Concepts

Medium Fidelity

High Fidelity

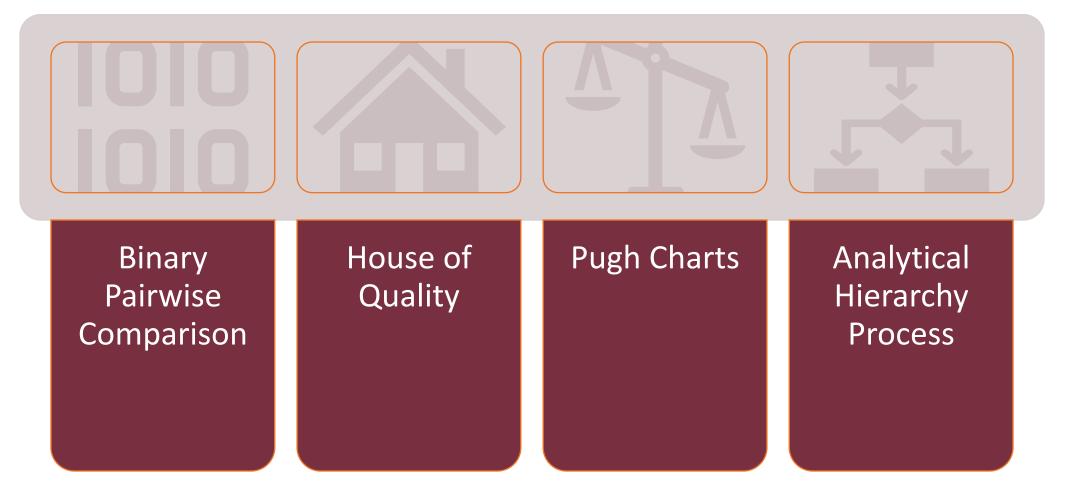
Santiago Leon

Medium Fidelity

Steel nozzle, steel frame, PIV DAQ, air tank provides gas, a vacuum removes excess regolith, Matlab is used to analyze the data, and air is the type of gas used. Steel nozzle, steel frame, Schlieren based DAQ, a can of compressed air provides gas, a vacuum removes excess regolith, Matlab is used to analyze the data, and air is the type of gas used. Aluminum nozzle, aluminum frame, Schlieren based DAQ, air tank provides gas, a vacuum removes excess regolith, Matlab is used to analyze the data, and air is the type of gas used.

PLA nozzle, plexiglass frame, PIV based DAQ, a compressor provides gas, a vacuum removes excess regolith, Matlab is used to analyze the data, and air is the type of gas used. Construct the enclosure out of wood and baseboard. Set up the jet testing with interchangeable 3D printed nozzles. Track the measurements with stereophotography.

High Fidelity


PLA nozzle, aluminum frame, PIV based DAQ, a compressor provides gas, a vacuum removes excess regolith, Matlab is used to analyze the data, and air is the type of gas used. PLA nozzle, wood frame, Lidar based DAQ, a compressor provides air, a vacuum removes excess regolith, Matlab is used to analyze the data, and air is the type of gas used.

Use clear baffles with a knife edge to separate the flow from the jet. Take images of the halfcrater formed at a fixed distance to obtain crater depth and width measurements. The rest of the data can be extrapolated in some software

Stephen Sutherland

Concept Selection Tools

Stephen Sutherland

Binary Pairwise Comparison

Customer Need	Score
Sand between 70 and 100 microns	1
Maintains atmospheric properties	1
Multiple Nozzle Sizes	4
Depth, area, and profile measurements of crater	6
Data Analysis	4
Nozzle must achieve supersonic speeds	7
Sturdy Structure	1
Under-expanded Jet	4

House of Quality

Velocity of Gas at Exit

Precision of Nozzle

Adjustable Nozzle Height

Holds Jet Steady

Pressure of Gass Supplied

FAMU-FSU College of Engineering

Pugh Charts

Datum: Auburn
Experimental
Set-Up

Engineering Characteristics

Pressure of Gas Supplied

Holds Jet Steady

Velocity of Gas ant Nozzle Exit

Adjustable of Nozzle Height

Precision of Nozzle

Stephen Sutherland

Analytical Hierarchy Process

Engineering Characteristics	Weighted Sum Vector {Ws}=[C]{W}	Criteria Weights {W}	Consistency Vector {Cons}={Ws}./{W}
Pressure of Gas Supplied	0.337		
	1.751	0.335	5.23
	0.308	0.061	5.07
Holds Jet Steady	1.386	0.272	5.10
	1.375	0.266	5.17
Velocity of Gas ant Nozzle Exit			

Adjustable of Nozzle Height

Precision of Nozzle

Average	Consistency	Consistency
Consistency	Index	Ratio
5.13	0.033	0.029

Final Selection

Concept #51

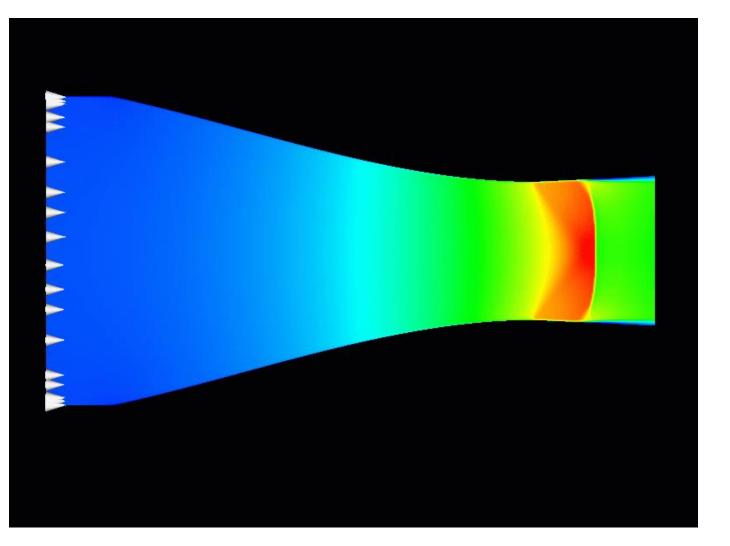
 Use clear baffles with a knife edge to separate the flow from the jet. Take images of the half-crater formed at a fixed distance to obtain crater depth and width measurements. The rest of the data can be extrapolated in some

17

Future Work

Build basic prototypes to help in the design process Create CAD models of our enclosure and nozzle for NASA to simulate our experiment Create CAD models of our enclosure and nozzle for NASA to simulate our experiment

Move on to supersonic nozzles and collect data


Provide data analysis to sponsors

Stephen Sutherland

18

Thank You!

